Extensions 1→N→G→Q→1 with N=He3 and Q=C32

Direct product G=N×Q with N=He3 and Q=C32
dρLabelID
C32×He381C3^2xHe3243,62

Semidirect products G=N:Q with N=He3 and Q=C32
extensionφ:Q→Out NdρLabelID
He31C32 = C3×C3≀C3φ: C32/C3C3 ⊆ Out He327He3:1C3^2243,51
He32C32 = C3×He3⋊C3φ: C32/C3C3 ⊆ Out He381He3:2C3^2243,53
He33C32 = He3⋊C32φ: C32/C3C3 ⊆ Out He3279He3:3C3^2243,58
He34C32 = 3+ 1+4φ: trivial image279He3:4C3^2243,65

Non-split extensions G=N.Q with N=He3 and Q=C32
extensionφ:Q→Out NdρLabelID
He3.1C32 = C3×He3.C3φ: C32/C3C3 ⊆ Out He381He3.1C3^2243,52
He3.2C32 = C9.He3φ: C32/C3C3 ⊆ Out He3273He3.2C3^2243,55
He3.3C32 = C33⋊C32φ: C32/C3C3 ⊆ Out He3279He3.3C3^2243,56
He3.4C32 = He3.C32φ: C32/C3C3 ⊆ Out He3279He3.4C3^2243,57
He3.5C32 = C9.2He3φ: C32/C3C3 ⊆ Out He3279He3.5C3^2243,60
He3.6C32 = C3×C9○He3φ: trivial image81He3.6C3^2243,64
He3.7C32 = 3- 1+4φ: trivial image279He3.7C3^2243,66

׿
×
𝔽